Multivalent Amino Sugars to Recognize Different TAR RNA Conformations.

نویسندگان

  • Patrick C Kellish
  • Sunil Kumar
  • Todd S Mack
  • Meredith Newby Spano
  • Mirko Hennig
  • Dev P Arya
چکیده

Neomycin dimers synthesized using "click chemistry" with varying functionality and length in the linker region have been shown to be effective in targeting the HIV-1 TAR RNA region of the HIV virus. TAR (Transactivation Response) RNA region, a 59 base pair stem loop structure located at the 5'-end of all nascent viral transcripts interacts with its target, a key regulatory protein, Tat, and necessitates the replication of HIV-1 virus. Ethidium bromide displacement and FRET competition assays have revealed nanomolar binding affinity between neomycin dimers and wildtype TAR RNA while in case of neomycin, only a weak binding was detected. Here, NMR and FID-based comparisons reveal an extended binding interface for neomycin dimers involving the upper stem of the TAR RNA thereby offering an explanation for increased affinities. To further explore the potential of these modified aminosugars we have extended binding studies to include four TAR RNA mutants that display conformational differences with minimal sequence variation. The differences in binding between neomycin and neomycin dimers is characterized with TAR RNA mutants that include mutations to the bulge region, hairpin region, and both the bulge and hairpin regions. Our results demonstrate the effect of these mutations on neomycin binding and our results show that linker functionalities between dimeric units of neomycin can distinguish between the conformational differences of mutant TAR RNA structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An RNA-binding peptide from bovine immunodeficiency virus Tat protein recognizes an unusual RNA structure.

The human immunodeficiency virus (HIV) Tat protein binds specifically to an RNA hairpin, TAR, located at the 5' end of its mRNA. Tat uses a single arginine residue within a short region of basic amino acids to recognize a bulge region in TAR. Here we show that a 17 amino acid arginine-rich peptide from the bovine immunodeficiency virus (BIV) Tat protein also binds to an RNA hairpin at the 5' en...

متن کامل

Mutations in the TAR hairpin affect the equilibrium between alternative conformations of the HIV-1 leader RNA.

The HIV-1 untranslated leader RNA can adopt two mutually exclusive conformations that represent alternative secondary structures. This leader RNA can fold either an extended duplex through long-distance base pairing or a branched conformation in which the RNA locally folds into hairpin structures. Both leader RNA conformations have the TAR hairpin in common, which forms the extreme 5' end of al...

متن کامل

Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex.

The Tat protein of bovine immunodeficiency virus (BIV) binds to its target RNA, TAR, and activates transcription. A 14-amino acid arginine-rich peptide corresponding to the RNA-binding domain of BIV Tat binds specifically to BIV TAR, and biochemical and in vivo experiments have identified the amino acids and nucleotides required for binding. The solution structure of the RNA-peptide complex has...

متن کامل

Recognition of HIV TAR RNA by triazole linked neomycin dimers.

A series of neomycin dimers have been synthesized using 'click chemistry' with varying linker functionality and length to target the TAR RNA region of HIV virus. TAR (trans activation response) RNA region, a 59 base pair stem loop structure located at 5'-end of all nascent HIV-1 transcripts interacts with a key regulatory protein, Tat, and necessitates the replication of HIV-1 virus. Neomycin, ...

متن کامل

Conformational constraint as a means for understanding RNA-aminoglycoside specificity.

The lack of high RNA target selectivity displayed by aminoglycoside antibiotics results from both their electrostatically driven binding mode and their conformational adaptability. The inherent flexibility around their glycosidic bonds allows them to easily assume a variety of conformations, permitting them to structurally adapt to diverse RNA targets. This structural promiscuity results in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • MedChemComm

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 2014